Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Med ; 29(1): 45, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013473

RESUMO

BACKGROUND: High-resolution respirometry (HRR) of human biopsies can provide useful metabolic, diagnostic, and mechanistic insights for clinical research and comparative medical studies. Fresh tissues analysis offers the potential best condition, the drawback being the need to use them shortly after dissection for mitochondrial respiratory experiments. The development of effective long-term storage protocols for biopsies that allow the assessment of key Electron Transport System (ETS) parameters at later stages is thus a major need. METHODS: We optimised a cryopreservation protocol that preserves mitochondrial membranes intactness, otherwise affected by direct tissue freezing. The protocol is based on a gradual freezing step from on-ice to liquid nitrogen and - 80 °C storage using a specific DMSO-based buffer. RESULTS: Placenta is a suitable tissue to design and test the effectiveness of long-term storage protocols being metabolically active foetal tissue with mitochondrial dysfunctions contributing to placental disease and gestational disorders. Here we designed and tested the effectiveness of the cryopreservation protocol using human placenta biopsies; we measured the ETS activity by HRR of placenta specimens comparing fresh, cryopreserved, and snap frozen conditions. CONCLUSIONS: By this protocol, Oxygen Consumption Rate (OCR) measurements of fresh and cryopreserved placental specimens are comparable whereas snap frozen procedure impairs mitochondrial activity.


Assuntos
Criopreservação , Placenta , Feminino , Humanos , Gravidez , Placenta/metabolismo , Criopreservação/métodos , Mitocôndrias/metabolismo , Biópsia , Congelamento
2.
Antioxidants (Basel) ; 12(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830073

RESUMO

Maternal obesity (MO) is expanding worldwide, contributing to the onset of Gestational Diabetes Mellitus (GDM). MO and GDM are associated with adverse maternal and foetal outcomes, with short- and long-term complications. Growing evidence suggests that MO and GDM are characterized by epigenetic alterations contributing to the pathogenesis of metabolic diseases. In this pilot study, plasma microRNAs (miRNAs) of obese pregnant women with/without GDM were profiled at delivery. Nineteen women with spontaneous singleton pregnancies delivering by elective Caesarean section were enrolled: seven normal-weight (NW), six obese without comorbidities (OB/GDM(-)), and six obese with GDM (OB/GDM(+)). miRNA profiling with miRCURY LNA PCR Panel allowed the analysis of the 179 most expressed circulating miRNAs in humans. Data acquisition and statistics (GeneGlobe and SPSS software) and Pathway Enrichment Analysis (PEA) were performed. Data analysis highlighted patterns of significantly differentially expressed miRNAs between groups: OB/GDM(-) vs. NW: n = 4 miRNAs, OB/GDM(+) vs. NW: n = 1, and OB/GDM(+) vs. OB/GDM(-): n = 14. For each comparison, PEA revealed pathways associated with oxidative stress and inflammation, as well as with nutrients and hormones metabolism. Indeed, miRNAs analysis may help to shed light on the complex epigenetic network regulating metabolic pathways in both the mother and the foeto-placental unit. Future investigations are needed to deepen the pregnancy epigenetic landscape in MO and GDM.

3.
Nutrients ; 14(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35631263

RESUMO

Maternal obesity is associated with inflammation and oxidative stress, strongly impacting the intrauterine environment with detrimental consequences for both mother and offspring. The saliva is a non-invasive biofluid reflecting both local and systemic health status. This observational study aimed to profile the epigenetic signature in the saliva of Obese (OB) and Normal-Weight (NW) pregnant women. Sixteen NW and sixteen OB Caucasian women with singleton spontaneous pregnancies were enrolled. microRNAs were quantified by the OpenArray Platform. The promoter region methylation of Suppressor of Cytokine Signaling 3 (SOCS3) and Transforming Growth Factor Beta 1 (TGF-Beta1) was assessed by pyrosequencing. There were 754 microRNAs evaluated: 20 microRNAs resulted in being differentially expressed between OB and NW. microRNA pathway enrichment analysis showed a significant association with the TGF-Beta signaling pathway (miTALOS) and with fatty acids biosynthesis/metabolism, lysine degradation, and ECM-receptor interaction pathways (DIANA-miRPath). Both SOCS3 and TGF-Beta1 were significantly down-methylated in OB vs. NW. These results help to clarify impaired mechanisms involved in obesity and pave the way for the understanding of specific damaged pathways. The characterization of the epigenetic profile in saliva of pregnant women can represent a promising tool for the identification of obesity-related altered mechanisms and of possible biomarkers for early diagnosis and treatment of pregnancy-adverse conditions.


Assuntos
Epigênese Genética , MicroRNAs , Obesidade , Complicações na Gravidez , Metilação de DNA , Feminino , Humanos , MicroRNAs/genética , Obesidade/genética , Gravidez , Complicações na Gravidez/genética , Gestantes , Regiões Promotoras Genéticas , Saliva/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Fator de Crescimento Transformador beta1/genética
4.
Antioxidants (Basel) ; 10(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34679654

RESUMO

SARS-CoV-2 infection has been related to adverse pregnancy outcomes. A placental role in protecting the fetus from SARS-CoV-2 infection has been documented. Nevertheless, it is still unclear how the placenta is affected in SARS-CoV-2 infection. Here we assessed placental mitochondrial (mt) and oxidative features in COVID-19 and healthy mothers. mtDNA levels, DNA oxidative damage, expression levels of genes involved in antioxidant defenses, mitochondrial dynamics and respiratory chain subunits were investigated in placentas from singleton pregnancies of 30 women with SARS-CoV-2 infection during the third trimester (12 asymptomatic, 18 symptomatic) and 16 controls. mtDNA levels decreased in COVID-19 placentas vs. controls and inversely correlated with DNA oxidative damage, which increased in the symptomatic group. Antioxidant gene expressions decreased in SARS-CoV-2 mothers (CAT, GSS). Symptomatic cases also showed a lower expression of respiratory chain (NDUFA9, SDHA, COX4I1) and mt dynamics (DNM1L, FIS1) genes. Alterations in placental mitochondrial features and oxidative balance in COVID-19-affected mothers might be due to the impaired intrauterine environment, generated by systemic viral effects, leading to a negative vicious circle that worsens placental oxidative stress and mitochondrial efficiency. This likely causes cell homeostasis dysregulations, raising the potential of possible long-term effects.

5.
Nutrients ; 13(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920886

RESUMO

Maternal obesity and gestational diabetes mellitus (GDM) are increasing worldwide, representing risk factors for both mother and child short/long-term outcomes. Oxidative stress, lipotoxicity and altered autophagy have already been reported in obesity, but few studies have focused on obese pregnant women with GDM. Antioxidant and macro/chaperone-mediated autophagy (CMA)-related gene expressions were evaluated herein in obese and GDM placentas. A total of 47 women with singleton pregnancies delivered by elective cesarean section were enrolled: 16 normal weight (NW), 18 obese with no comorbidities (OB GDM(-)), 13 obese with GDM (OB GDM(+)). Placental gene expression was assessed by real-time PCR. Antioxidant gene expression (CAT, GPX1, GSS) decreased, the pro-autophagic ULK1 gene increased and the chaperone-mediated autophagy regulator PHLPP1 decreased in OB GDM(-) vs. NW. On the other hand, PHLPP1 expression increased in OB GDM(+) vs. OB GDM(-). When analyzing results in relation to fetal sex, we found sexual dimorphism for both antioxidant and CMA-related gene expressions. These preliminary results can pave the way for further analyses aimed at elucidating the placental autophagy role in metabolic pregnancy disorders and its potential targetability for the treatment of diabetes outcomes.


Assuntos
Antioxidantes/metabolismo , Autofagia/genética , Diabetes Gestacional/genética , Obesidade Materna/genética , Placenta/metabolismo , Adulto , Cesárea , Feminino , Humanos , Estresse Oxidativo/genética , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...